Thursday, October 20, 2016

Lineargewichtete Gleitende Mittelwertberechnung

Moving Average Technische Indikator Die Moving Average Technische Indikator zeigt den durchschnittlichen Instrument Preis Wert für einen bestimmten Zeitraum. Wenn man den gleitenden Durchschnitt berechnet, berechnet man den Instrumentenpreis für diesen Zeitraum. Wenn sich der Preis ändert, steigt oder fällt sein gleitender Durchschnitt. Es gibt vier verschiedene Arten von gleitenden Durchschnitten: Einfach (auch als Arithmetik bezeichnet). Exponentiell. Geglättet und linear gewichtet. Bewegungsdurchschnitte können für jeden sequentiellen Datensatz berechnet werden, einschließlich der Eröffnungs - und Schlusskurse, der höchsten und niedrigsten Preise, des Handelsvolumens oder anderer Indikatoren. Es ist oft der Fall, wenn doppelte gleitende Durchschnitte verwendet werden. Das Einzige, wo sich verschie - dende Durchschnittswerte verschiedener Typen erheblich voneinander unterscheiden, ist, wenn Gewichtskoeffizienten, die den letzten Daten zugeordnet sind, unterschiedlich sind. Wenn wir von einem einfachen gleitenden Durchschnitt sprechen, sind alle Preise des fraglichen Zeitraums gleich wertig. Exponentielle und linear gewichtete Bewegungsdurchschnitte legen mehr Wert auf die neuesten Preise. Der gängigste Weg zur Interpretation des gleitenden Durchschnitts ist es, seine Dynamik mit der Preisaktion zu vergleichen. Wenn der Instrumentenpreis über seinem gleitenden Durchschnitt ansteigt, erscheint ein Kaufsignal, wenn der Kurs unter den gleitenden Durchschnitt fällt, was wir haben, ist ein Verkaufssignal. Dieses handelnde System, das auf dem gleitenden Durchschnitt basiert, ist nicht entworfen, um Eintritt in den Markt direkt in seinem niedrigsten Punkt und seinem Ausgang direkt auf dem Höhepunkt zur Verfügung zu stellen. Es erlaubt, nach dem folgenden Trend zu handeln: bald zu kaufen, nachdem die Preise den Boden zu erreichen, und zu verkaufen, bald nachdem die Preise ihren Höhepunkt erreicht haben. Bewegungsdurchschnitte können auch auf Indikatoren angewendet werden. Das ist, wo die Interpretation der Indikatorbewegungsdurchschnitte ähnlich der Interpretation der Preisbewegungsdurchschnitte ist: wenn der Indikator über seinem gleitenden Durchschnitt steigt, bedeutet das, dass die aufsteigende Indikatorbewegung wahrscheinlich fortfährt: wenn der Indikator unter seinen gleitenden Durchschnitt fällt, dieses Bedeutet, dass es wahrscheinlich weiter nach unten gehen wird. Hier sind die Arten von gleitenden Durchschnittswerten auf dem Chart: Einfacher Moving Average (SMA) Exponentieller Moving Average (EMA) Smoothed Moving Average (SMMA) Linearer gewichteter Moving Average (LWMA) Berechnung: Simple Moving Average (SMA) Wird der arithmetische gleitende Durchschnitt berechnet, indem die Preise des Instrumentenschlusses über eine bestimmte Anzahl von Einzelperioden (z. B. 12 Stunden) zusammengefasst werden. Dieser Wert wird dann durch die Anzahl dieser Perioden dividiert. Dabei ist: N die Anzahl der Berechnungsperioden. Exponential Moving Average (EMA) Der exponentiell geglättete gleitende Durchschnitt wird berechnet, indem der gleitende Durchschnitt eines bestimmten Anteils des aktuellen Schlusskurses auf den vorherigen Wert addiert wird. Bei exponentiell geglätteten gleitenden Durchschnitten sind die neuesten Preise von mehr Wert. P-Prozentsatz des exponentiellen gleitenden Durchschnitts wird wie folgt aussehen: Wo: CLOSE (i) der Preis des laufenden Periodenabschlusses EMA (i-1) Exponentiell bewegender Durchschnitt des vorherigen Periodenabschlusses P der Prozentsatz der Verwendung des Preiswerts. Smutterhed Moving Average (SMMA) Der erste Wert dieses geglätteten gleitenden Durchschnitts wird als einfacher gleitender Durchschnitt (SMA) berechnet: Der zweite und nachfolgende gleitende Mittelwert wird gemäß dieser Formel berechnet: wobei: SUM1 die Summe der Schlusskurse für N ist Perioden PREVSUM ist die geglättete Summe des vorherigen Balkens SMMA1 ist der geglättete gleitende Durchschnitt des ersten Balkens SMMA (i) ist der geglättete gleitende Durchschnitt des aktuellen Balkens (mit Ausnahme des ersten) CLOSE (i) ist der aktuelle Schlusskurs N Ist die Glättungsperiode. Linearer gewichteter gleitender Durchschnitt (LWMA) Bei gewichteten gleitenden Mittelwerten sind die letzten Daten von größerem Wert als frühere Daten. Der gewichtete gleitende Durchschnitt wird berechnet, indem jeder der Schlusskurse innerhalb der betrachteten Reihe mit einem gewissen Gewichtskoeffizienten multipliziert wird. Wobei: SUM (i, N) die Gesamtsumme der Gewichtskoeffizienten ist. Quellcode Vollständige MQL4 Quelle von Moving Averages ist in der Codebasis verfügbar: Moving Averages Warnung: Alle Rechte an diesen Materialien sind von MetaQuotes Software Corp reserviert. Kopieren oder Nachdrucken dieser Materialien ist ganz oder teilweise verboten. Moving Average Der Moving Average Technische Indikator zeigt den durchschnittlichen Instrumentenpreis für einen bestimmten Zeitraum an. Wenn man den gleitenden Durchschnitt berechnet, berechnet man den Instrumentenpreis für diesen Zeitraum. Wenn sich der Preis ändert, steigt oder fällt sein gleitender Durchschnitt. Es gibt vier verschiedene Arten von gleitenden Durchschnitten: Einfach (auch als Arithmetik bezeichnet), Exponential. Geglättet und gewichtet. Der gleitende Durchschnitt kann für jeden sequentiellen Datensatz berechnet werden, einschließlich der Eröffnungs - und Schlusskurse, der höchsten und niedrigsten Preise, des Handelsvolumens oder anderer Indikatoren. Es ist oft der Fall, wenn doppelte gleitende Durchschnitte verwendet werden. Das Einzige, wo sich verschie - dende Durchschnittswerte verschiedener Typen erheblich voneinander unterscheiden, ist, wenn Gewichtskoeffizienten, die den letzten Daten zugeordnet sind, unterschiedlich sind. Falls wir von Simple Moving Average sprechen. Alle Preise des fraglichen Zeitraums gleich sind. Exponential Moving Average und Linear Weighted Moving Average legen mehr Wert auf die neuesten Preise. Der gängigste Weg zur Interpretation des gleitenden Durchschnitts ist es, seine Dynamik mit der Preisaktion zu vergleichen. Wenn der Instrumentenpreis über seinem gleitenden Durchschnitt ansteigt, erscheint ein Kaufsignal, wenn der Kurs unter den gleitenden Durchschnitt fällt, was wir haben, ist ein Verkaufssignal. Dieses handelnde System, das auf dem gleitenden Durchschnitt basiert, ist nicht entworfen, um Eintritt in den Markt direkt in seinem niedrigsten Punkt und seinem Ausgang direkt auf dem Höhepunkt zur Verfügung zu stellen. Es erlaubt, nach dem folgenden Trend zu handeln: bald zu kaufen, nachdem die Preise den Boden zu erreichen, und zu verkaufen, bald nachdem die Preise ihren Höhepunkt erreicht haben. Bewegungsdurchschnitte können auch auf Indikatoren angewendet werden. Das ist, wo die Interpretation der Indikatorbewegungsdurchschnitte ähnlich der Interpretation der Preisbewegungsdurchschnitte ist: wenn der Indikator über seinem gleitenden Durchschnitt steigt, bedeutet das, dass die aufsteigende Indikatorbewegung wahrscheinlich fortfährt: wenn der Indikator unter seinen gleitenden Durchschnitt fällt, dieses Bedeutet, dass es wahrscheinlich weiter nach unten gehen wird. Hier sind die Arten von gleitenden Durchschnittswerten im Diagramm: Einfacher Moving Average (SMA) Exponentieller Moving Average (EMA) Glatter Moving Average (SMMA) Linearer Gewichteter Moving Average (LWMA) Sie können die Handelssignale dieses Indikators testen, indem Sie einen Expertenratgeber erstellen Im MQL5-Assistenten. Berechnung Einfacher gleitender Mittelwert (SMA) Ein einfacher, dh arithmetisch gleitender Durchschnitt wird berechnet, indem die Preise des Instrumentenschlusses über eine bestimmte Anzahl von Einzelperioden (z. B. 12 Stunden) zusammengefasst werden. Dieser Wert wird dann durch die Anzahl dieser Perioden dividiert. SMA SUM (CLOSE (i), N) / N SUM Summe CLOSE (i) laufende Periode close price N Anzahl der Berechnungsperioden. Exponential Moving Average (EMA) Der exponentiell geglättete gleitende Durchschnitt wird durch Addition eines bestimmten Anteils des aktuellen Schlusskurses zum vorherigen Wert des gleitenden Durchschnitts berechnet. Bei exponentiell geglätteten gleitenden Durchschnitten sind die letzten engen Preise von mehr Wert. P-Prozentsatz exponentieller gleitender Durchschnitt wird folgendermaßen aussehen: EMA (CLOSE (i) P) (EMA (i - 1) (1 - P)) CLOSE (i) Einer vorherigen Periode P den Prozentsatz der Verwendung des Preiswertes. Gleitender gleitender Mittelwert (SMMA) Der erste Wert dieses geglätteten gleitenden Mittelwertes wird als einfacher gleitender Mittelwert (SMA) berechnet: SUM1 SUM (CLOSE (i), N) Der zweite gleitende Durchschnitt wird gemäß dieser Formel berechnet: SMMA (i) (I - 1) N SMMA (i) (PREVSUM - SMMA (i - 1) SCHLIESSEN (i) Die folgenden Mittelwerte werden nach folgender Formel berechnet: ) / N SUM Summe SUM1 Summe Summe der Schlusskurse für N Perioden wird von der vorherigen Bar gezählt PREVSUM geglättete Summe der vorherigen Bar SMMA (i-1) geglättet gleitender Durchschnitt der vorherigen Bar SMMA (i) geglättet gleitender Durchschnitt der Aktueller Balken (mit Ausnahme des ersten) CLOSE (i) aktueller Schlusskurs N Glättungszeitraum. Nach arithmetischen Konvertierungen kann die Formel vereinfacht werden: SMMA (i - 1) (N - 1) CLOSE (i)) / N Linearer gewichteter gleitender Durchschnitt (LWMA) Bei gewichteten gleitenden Mittelwerten die letzten Daten Ist von mehr Wert als frühere Daten. Der gewichtete gleitende Durchschnitt wird berechnet, indem jeder der Schlusskurse innerhalb der betrachteten Reihe mit einem gewissen Gewichtskoeffizienten multipliziert wird: LWMA SUM (NULL (i) i, N) / SUM (i, N) SUM Summe CLOSE (i) Preis SUM (i, N) Gesamtsumme der Gewichtskoeffizienten N Glättungszeitraum. Der gewichtete gleitende durchschnittliche gewichtete gleitende Durchschnitt (WMA) ist eine der Konfigurationen eines einfachen gleitenden Durchschnitts, der nicht nur für Preiswerte, sondern auch für ihr Gewicht Rechnung trägt. Berechnet nach Formel:. Pi mdash Preiswert für die Anzahl der i-Perioden. (Heute i 1), Wi mdash Gewichtswert für Preis für die Anzahl der i-Perioden. In einfacheren Worten werden Elemente mit einer Rechnung ihrer Werte summiert und auf die Summe der Gewichte dieser Elemente aufgeteilt, so daß im allgemeinen das arithmetische Mittel dieser Elemente berechnet wird. Es wird angenommen, dass das Gewicht sich entsprechend der linearen Funktion ändert, wobei W1 das größte Gewicht annimmt und dann die Berechnung beispielsweise eine einfache arithmetische Progression verwendet. 1, 2, 3, 4, 5, 6. (oder irgendwelche anderen 0,5, 0,75, 1, 1,25). Solche Repräsentation heißt L inear Weighted Moving Average. (LWMA). Lets nehmen Zeitraum gleich 5: wo. P1 und P2 mdash sind die Preise für heute und gestern. Einige Konfigurationen können eine kompliziertere Formel mit nichtlinearer Verteilung verwenden, bei der logarithmische, parabelförmige und andere Funktionen verwendet werden, z. B. wenn folgendes berücksichtigt wird: - die Anzahl der Zecken in bar - die Länge der zurückgelegten Distanz in der Kerze (hoch - niedrig) Gewicht durchschnittlich gegen die Entfernung - die Größe der Kerze Körper (Close - Open). Preis kann auch anders sein. Schließen, Öffnen, Hoch, Niedrig, Median Preis, Typischer Preis. Die Anwendung des WMA-gewichteten Bewegungsdurchschnitts wird gewöhnlich in den gleichen Fällen angewandt, in denen ein einfacher gleitender Durchschnitt für technische Analysezwecke angewendet wird. Obwohl unter ähnlichen Eingang und Ausgang Marktwarnungen LWMA reagiert auf Preisänderung schneller, weil Gewicht für die letzten Perioden berücksichtigt wird. Das erlaubt nicht, glückliche Momente für das Betreten des Marktes während der wichtigen Wirtschaftsnachrichten, der Interventionen und anderer bedeutender Bewegungen zu verpassen. Für die Börsenanalyse empfiehlt es sich, die Parameter 7 und 14 für den Devisenmarkt ndash 5 und 20 zu verwenden. Wie Sie auf dem Bild sehen können, ist der größere Zeitraum der glattere gleitende Durchschnitt und der größere Schwankungsbereich. Sine-Weighted Moving Average (SWMA) verwendet die Sinusfunktion während der Berechnung als Gewicht (W). Dank SWMA ist es möglich, Geräusche zu filtern, Boden und Oberseite mit einer höheren Präzision zu bestimmen. Vor-und Nachteile von WMA Aufgrund der Berücksichtigung der Gewicht der Elemente, ist WMA empfindlicher gegenüber Preisänderung im Gegensatz zu einfachen gleitenden Durchschnitt, der ermöglicht Eingang und Ausgang Warnungen schneller. Jedoch wie jedes andere MA hat auch das Gewicht eine gewisse Verzögerung. Es ist besser, es in kurz-und mittelfristigen Strategien anzuwenden, weil die neuesten Preisänderungen das größte Gewicht hat. Mit anderen Worten, bei hoher Zeit-Frame-WMA sieht glatter wegen der niedrigen Markt Lärm und es nicht so klare Warnungen. Andere Artikel: Technische Analyse: Moving Averages Die meisten Chart-Muster zeigen eine Menge von Veränderungen in der Preisentwicklung. Dies kann es schwierig für Händler, eine Vorstellung von einem Sicherheiten insgesamt Trend zu bekommen. Eine einfache Methode Trader verwenden, um dies zu bekämpfen ist, gelten gleitende Durchschnitte. Ein gleitender Durchschnitt ist der Durchschnittspreis eines Wertpapiers über einen festgelegten Zeitraum. Durch die Plotierung eines durchschnittlichen Sicherheitspreises wird die Kursbewegung geglättet. Sobald die täglichen Schwankungen entfernt sind, sind Händler besser in der Lage, den wahren Trend zu identifizieren und erhöhen die Wahrscheinlichkeit, dass es zu ihren Gunsten zu arbeiten. (Um mehr zu erfahren, lesen Sie die Moving Averages Tutorial.) Arten von Moving Averages Es gibt eine Reihe von verschiedenen Arten von gleitenden Durchschnitten, die in der Art, wie sie berechnet werden, variieren, aber wie jeder Durchschnitt interpretiert wird, bleibt der gleiche. Die Berechnungen unterscheiden sich nur hinsichtlich der Gewichtung, die sie auf die Preisdaten setzen, wobei sie sich von der gleichen Gewichtung jedes Preispunktes zu mehr Gewicht auf die jüngsten Daten setzen. Die drei häufigsten Arten von gleitenden Durchschnitten sind einfach. Linear und exponentiell. Simple Moving Average (SMA) Dies ist die häufigste Methode, um den gleitenden Durchschnitt der Preise zu berechnen. Es nimmt einfach die Summe aller vergangenen Schlusskurse über den Zeitraum und teilt das Ergebnis durch die Anzahl der Preise, die in der Berechnung verwendet werden. Zum Beispiel werden in einem 10-Tage gleitenden Durchschnitt die letzten 10 Schlusskurse addiert und dann durch 10 geteilt. Wie Sie in Abbildung 1 sehen können, ist ein Händler in der Lage, den Durchschnitt weniger auf wechselnde Preise durch Erhöhung der Zahl zu reagieren Der in der Berechnung verwendeten Fristen. Die Erhöhung der Anzahl der Zeiträume in der Berechnung ist eine der besten Möglichkeiten, um die Stärke des langfristigen Trends und die Wahrscheinlichkeit, dass es umgekehrt zu messen. Viele Personen argumentieren, dass die Nützlichkeit dieser Art von Durchschnitt begrenzt ist, da jeder Punkt in der Datenreihe die gleiche Auswirkung auf das Ergebnis hat, unabhängig davon, wo er in der Sequenz auftritt. Die Kritiker argumentieren, dass die jüngsten Daten wichtiger sind und deshalb auch eine höhere Gewichtung haben sollte. Diese Art der Kritik war einer der Hauptfaktoren, die zur Erfindung anderer Formen von gleitenden Durchschnitten führten. Linearer gewichteter Mittelwert Dieser gleitende Durchschnittsindikator ist der kleinste der drei Fälle und wird verwendet, um das Problem der gleichen Gewichtung zu lösen. Der lineare gewichtete gleitende Durchschnitt wird berechnet, indem die Summe aller Schlusskurse über einen bestimmten Zeitraum genommen und mit der Position des Datenpunkts multipliziert wird und dann durch die Summe der Anzahl von Perioden dividiert wird. Beispielsweise wird in einem fünftägigen linearen gewichteten Durchschnitt der heutige Schlusskurs mit fünf, yesterdays um vier multipliziert und so weiter, bis der erste Tag im Periodenbereich erreicht ist. Diese Zahlen werden dann addiert und durch die Summe der Multiplikatoren dividiert. Exponential Moving Average (EMA) Diese gleitende Durchschnittsberechnung verwendet einen Glättungsfaktor, um ein höheres Gewicht auf die letzten Datenpunkte zu legen und gilt als viel effizienter als der linear gewichtete Durchschnitt. Ein Verständnis der Berechnung ist in der Regel nicht für die meisten Händler erforderlich, da die meisten Charting-Pakete die Berechnung für Sie. Das Wichtigste, um sich über den exponentiellen gleitenden Durchschnitt zu erinnern, ist, dass er mehr auf neue Informationen bezogen auf den einfachen gleitenden Durchschnitt reagiert. Diese Reaktionsfähigkeit ist einer der Schlüsselfaktoren, warum dies der gleitende Durchschnitt der Wahl unter vielen technischen Händlern ist. Wie Sie in Abbildung 2 sehen können, steigt und fällt ein 15-Perioden-EMA schneller als ein 15-stündiges SMA. Diese leichte Differenz scheint nicht so viel, aber es ist ein wichtiger Faktor, um bewusst zu sein, da sie die Rückkehr beeinflussen können. Hauptverwendungen der Gleitende Mittel Gleitende Mittelwerte werden verwendet, um aktuelle Trends und Trendumkehrungen zu identifizieren sowie Unterstützungs - und Widerstandswerte einzurichten. Bewegungsdurchschnitte können verwendet werden, um schnell zu identifizieren, ob sich ein Sicherheitsgut in einem Aufwärtstrend oder einem Abwärtstrend bewegt, abhängig von der Richtung des gleitenden Durchschnitts. Wie Sie in Abbildung 3 sehen können, wenn ein gleitender Durchschnitt aufwärts geht und der Preis über ihm liegt, ist die Sicherheit in einem Aufwärtstrend. Umgekehrt kann ein abwärts gerichteter gleitender Durchschnitt mit dem Preis unten verwendet werden, um einen Abwärtstrend zu signalisieren. Ein anderes Verfahren zur Bestimmung des Impulses besteht darin, die Reihenfolge eines Paares von sich bewegenden Mittelwerten zu betrachten. Wenn ein kurzfristiger Durchschnitt über einem längerfristigen Durchschnitt liegt, ist der Trend vorbei. Auf der anderen Seite signalisiert ein langfristiger Durchschnitt über einem kürzerfristigen Durchschnitt eine Abwärtsbewegung im Trend. Gleitende durchschnittliche Trendumkehrungen werden in zwei Hauptformen gebildet: wenn der Preis sich durch einen gleitenden Durchschnitt bewegt und wenn er sich durch gleitende Durchschnittsübergänge bewegt. Das erste gemeinsame Signal ist, wenn der Preis bewegt sich durch einen wichtigen gleitenden Durchschnitt. Wenn beispielsweise der Kurs eines Wertpapiers, der sich in einem Aufwärtstrend befand, unter einen 50-Perioden-gleitenden Durchschnitt fällt, wie in 4, ist dies ein Zeichen, dass der Aufwärtstrend umgekehrt werden kann. Das andere Signal einer Trendumkehr ist, wenn ein gleitender Durchschnitt einen anderen kreuzt. Zum Beispiel, wie Sie in Abbildung 5 sehen können, wenn der 15-Tage-Gleitende Durchschnitt über dem 50-Tage-Gleitenden Durchschnitt überschreitet, ist es ein positives Zeichen, dass der Preis zu steigen beginnt. Wenn die in der Berechnung verwendeten Zeiträume relativ kurz sind, beispielsweise 15 und 35, könnte dies eine kurzfristige Trendumkehr signalisieren. Auf der anderen Seite, wenn zwei Mittelwerte mit relativ langen Zeitrahmen überqueren (50 und 200, zum Beispiel), wird dies verwendet, um eine langfristige Trendverschiebung vorzuschlagen. Ein weiterer wichtiger Weg gleitende Durchschnitte werden verwendet, um Unterstützung und Widerstand Ebenen zu identifizieren. Es ist nicht ungewöhnlich zu sehen, eine Aktie, die fallen hat seinen Rückgang stoppen und umgekehrte Richtung, sobald es die Unterstützung eines großen gleitenden Durchschnitt trifft. Ein Umzug durch einen großen gleitenden Durchschnitt wird oft als Signal von technischen Händlern verwendet, dass der Trend rückgängig gemacht wird. Wenn beispielsweise der Kurs den 200-Tage-Bewegungsdurchschnitt in einer Abwärtsrichtung durchbricht, ist dies ein Signal, dass der Aufwärtstrend umgekehrt wird. Gleitende Durchschnitte sind ein leistungsfähiges Werkzeug für die Analyse der Trend in einer Sicherheit. Sie bieten nützliche Unterstützung und Widerstand Punkte und sind sehr einfach zu bedienen. Die am häufigsten verwendeten Zeitrahmen, die verwendet werden, wenn gleitende Durchschnitte zu schaffen sind die 200-Tage, 100 Tage, 50-Tage, 20-Tage und 10-Tage. Die 200-Tage-Durchschnitt wird angenommen, ein gutes Maß für ein Geschäftsjahr zu sein, ein 100-Tage-Durchschnitt ein halbes Jahr, ein 50-Tage-Durchschnitt ein Viertel eines Jahres eine 20-Tage-Durchschnitt eines Monats und 10 - Durchschnitt von zwei Wochen. Gleitende Durchschnitte helfen technische Händler einige der Lärm glätten, die in Tag-zu-Tag Kursbewegungen, so dass Händler eine bessere Sicht auf die Preisentwicklung zu finden ist. Bisher konzentrieren wir uns auf die Preisentwicklung, durch Diagramme und Durchschnitte. Im nächsten Abschnitt, betrachten auch einige andere Techniken, die benutzt werden, um Preisbewegung und - muster zu bestätigen. Technische Analyse: Indikatoren und Oszillatoren Erfahren Sie, wie Sie investieren, indem Sie sich für den Investing Basics-Newsletter anmeldenLinear Regression Indicator Die lineare Regression Indicator wird für Trend-Identifizierung und Trend in ähnlicher Weise wie gleitende Durchschnitte verwendet. Der Indikator sollte nicht mit Linearregressionslinien verwechselt werden, die zu einer Reihe von Datenpunkten gerade Linien sind. Die lineare Regressions Indicator plottet die Endpunkte einer ganzen Reihe von linearen Regressionsgeraden an aufeinanderfolgenden Tagen gezogen. Der Vorteil der linearen Regressions Indicator über einer normalen gleitender Durchschnitt ist, dass es weniger Verzögerung als der gleitende Mittelwert hat, reagiert schneller auf Änderungen in der Richtung. Der Nachteil ist, dass es anfälliger für whipsaws ist. Der Linear Regression Indicator ist nur für den Handel mit starken Trends geeignet. Signale werden ähnlich wie gleitende Mittelwerte genommen. Verwenden Sie die Richtung der linearen Regression Indikator zu betreten und verlassen Trades mit einer längerfristigen Indikator als Filter. Gehen Sie lange, wenn die Linear Regression Indicator auftaucht oder beenden Sie einen kurzen Handel. Gehen Sie kurz (oder verlassen einen langen Handel), wenn die Linear Regression Indicator ausgeschaltet wird. Eine Variation des oben ist Trades einzugeben, wenn der Kurs die lineare Regression Indikator kreuzt, aber immer noch verlassen, wenn die lineare Regression Indikator nach unten dreht. Beispiel Mäuse über Diagrammbeschriftungen, um Handelssignale anzuzeigen. Gehen Sie lange L, wenn der Kurs über dem 100-Tage-Linear-Regressions-Indikator kreuzt, während der 300-Tage-Anstieg ansteigt. Exit X, wenn die 100-tägige Linear Regression Indicator ausfällt Gehen Sie bei L erneut, wenn der Kurs über dem 100-Tage Linear Regression Indicator Exit geht X, wenn die 100-Tage-Linear-Regression-Anzeige nachlässt Go long L, wenn der Kurs über 100 Tage hinausgeht Lineare Regression Beenden X, wenn die 100-Tage-Anzeige ausfällt Gehen Sie lange L, wenn die 300-tägige Linear-Regressionsanzeige nach dem oben gekreuzten Preis auftaucht Den 100-Tage-Indikator Exit X, wenn die 300-Tage-Linear Regression Indicator ausgeschaltet wird. Bearish Divergenz auf dem Indikator warnt vor einer großen Trendumkehr.


No comments:

Post a Comment